
Realizing the Vision of Zero Software Defects

Systems & Software Technology Conference Tutorial

Jay Abraham
jay.abraham@mathworks.com

May 16th 2011

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Realizing the Vision of Zero Software Defects

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MathWorks,3 Apple Hill Drive,Natick,MA,01760

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

103

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Tutorial AgendaTutorial Agenda
Complexity of Systems
– Failures and their cause

Implementation and Verificationp
– Developing robust systems

Model and Code VerificationModel and Code Verification
– Addressing design and code errors

Practical ConsiderationsPractical Considerations
– Implementing and verifying complex systems

Additional Techniques for Improving Software Quality

2

Additional Techniques for Improving Software Quality
– Addressing standards and other considerations

Complexity of Systems

Failures and their cause

3

Complexity of SystemsComplexity of Systems
Modern automotive powertrain
– 500 to 1,000 thousands lines of code (KLOC)

Boeing 787 flight control system
– 6,500 KLOC

Software in spacecraft*So t a e spacec a t
– 3 to 1,700 KLOC

1700

3 8 32 160
430

Voyager
(1977)

Galileo
(1989)

Cassini
(1997)

MPF
(1997)

Shuttle
(2000)

ISS
(2000)

4
*Automated Software Verification & Validation: An emerging approach for ground operations
Bell and Brat, NASA

(1977) (1989) (1997) (1997) (2000) (2000)

Complex Systems FailComplex Systems Fail

Ariane-5, expendable launch system
– Overflow error

Resulted in destruction of the launch vehicle– Resulted in destruction of the launch vehicle

USS Yorktown, Ticonderoga class ship
– Divide by zero error
– Caused ship’s propulsion system to fail

Therac-25, radiation therapy machine
– Race condition and overflow error

C lti d t d i f ti t

5

– Casualties due to overdosing of patients

Cost of Failure Aerospace Examples*Cost of Failure – Aerospace Examples*

System Cost ReasonSystem Cost Reason
Ariane 5 (1996) $594M Overflow software error

Delta III (1998) $336M SW did not account forDelta III (1998) $336M SW did not account for
normal roll oscillation

Titan IV B (1999) $1.5B Wrong decimal point in SW
(const -0.19.. vs. -1.99..) ()

Mars Climate Orbiter (1999) $524M Wrong units

Zenit 3SL (2000) $367M Premature 2nd stageZenit 3SL (2000) $367M Premature 2 stage
shutdown

Messenger (2004) $24M SW test related delays
resulting in data loss

6

g

*Automated Software Verification & Validation: An emerging approach for ground operations
Bell and Brat, NASA

Why Do Complex Systems Fail?*Why Do Complex Systems Fail?*

Insufficient specification

Design errorsDesign errors

Software coding errors

Mechanical failure

Deliberate interferenceDeliberate interference

Human errors

7
*Issues in Safety Assurance
Martyn Thomas, SafeComp 2003

Scope of TutorialScope of Tutorial

Insufficient specification

Design errorsDesign errors

Software coding errors
Embedded Software

Mechanical failure

Deliberate interferenceDeliberate interference

Human errors

8

Design ErrorsDesign Errors

Poorly designed software
– That may or may not adhere to specifications

Avoiding design errors
– Not easy issues may not be detected– Not easy, issues may not be detected
– With non-exhaustive testing or simulation methods

Effects include
– Software crashes

Unexpected software behavior

9

– Unexpected software behavior

Design Error ExamplesDesign Error Examples

Dead logic

Unreachable states

Overflow

Divide by zeroUnreachable states

Deadlock conditions

Divide by zero

And lots more …

Non-deterministic
behavior

Exception conditions

10

Software Code ErrorsSoftware Code Errors

Coding defects
– Resulting in run-time errors

What are run-time errors
– Also known as “latent faults”– Also known as latent faults
– Rarely manifest and are infrequent

Effects include
– Software crashes

Unexpected software behavior

11

– Unexpected software behavior

Run Time Error ExamplesRun-Time Error Examples

Non-initialized data

Out of bound array access

Illegal type conversion

Dead codeOut of bound array access

Null pointer dereference

Dead code

Overflows

Incorrect computation Non-terminating loops

Concurrent access to
shared data

And lots more …

12

The Vision of Zero Defect SoftwareThe Vision of Zero Defect Software

Is it possible?
Yes, but with some caveatsYes, but with some caveats

Is it applicable to all types of software?Is it applicable to all types of software?
No, and that’s OK

So when does it make sense to invest time,
energy and effort to create zero defect s/w

13

energy, and effort to create zero defect s/w …

Constraining the ProblemConstraining the Problem

When does software quality truly matter
– Human lives at risk
– Missions that cannot fail
– Business operations that cannot suffer downtime

Computer devices
High integrity embedded systems– High integrity embedded systems

– Examples: flight control, braking systems,
remote cellular base stations, …

14

Introduction to High IntegrityIntroduction to High Integrity
Embedded Systems

General embedded systems
– Software world-wide increasing 10% to 20% per year
– Embedded microprocessors account >98%p

High integrity systems found in
– Aircraft, automobiles, medical devices
– Safety and reliability are paramount

Software algorithms contain
– Complex controls algorithms
– Computations in fixed point and floating point
– Logic, state based machine algorithms

M lti th d d d ti

15

– Multi-threaded code execution

Challenges in High Integrity*Challenges in High Integrity*

Strong correlation between application size and
the total number of defects
– Estimated 30 defects per 1000 lines of code
– 20% will be severe

Defects must be found and removed– Defects must be found and removed

Time and resources allocated to finding andTime and resources allocated to finding and
fixing software defects
– Most expensive aspect of software development

16
* Embedded software: facts, figures, and future
Ebert And Jones, IEEE Computer 2009

Implementation and Verification of
Complex SystemsComplex Systems

Implementing and Verifying Complex Embedded Software Systems

17

Software for an Engine Controller

Complex Algorithm

Aircraft Engineg

Embedded Controller

18

Design Implementation and VerificationDesign Implementation and Verification

System Requirements Vehicle Integration System Requirements g
and Calibration

Software Requirements Hardware/Software
Integration

Software Design Software
Integration

Coding

19

Design ImplementationDesign Implementation

RESEARCH REQUIREMENTSSystem Requirements

DESIGN

RESEARCH REQUIREMENTS

Environment Models

System Requirements

Environment Models

Mechanical Electrical

Supervisory Logic

Software Requirements

IMPLEMENTATION

Control Algorithms

Software Design

IMPLEMENTATION

MCU DSP

Hand
Code

Generated
C/C++

Third Party
Code

Coding

20

Design Implementation with Model
Based Design (MBD)

RESEARCH REQUIREMENTS

Based Design (MBD)

DESIGN

Environment Models

Mechanical Electrical

Supervisory LogicDESIGN

H d itt

IMPLEMENTATION

Control AlgorithmsHandwritten
Code

MCU DSP

Hand
Code

Generated
C/C++

Third Party
Code

21
INTEGRATION

Design & Code Error ManifestationDesign & Code Error Manifestation

System Requirements Vehicle Integration System Requirements g
and Calibration

Software Requirements Hardware/Software
Integration

Software Design Software
Integration

Coding

22

Errors
can manifest here

Errors
can manifest here

Design & Code Error DetectionDesign & Code Error Detection

System Requirements Vehicle Integration System Requirements g
and Calibration

Software Requirements Hardware/Software
Integration

Software Design Software
Integration

Coding

23

Errors
can manifest here

Errors
can manifest here

Possible to miss
error detection here

Possible to miss
error detection here

Model and Code Verification

Addressing design and code errors

24

Solving the Problem with Model andSolving the Problem with Model and
Code Verification

Model Verification Code Verification

►Detect and fix design errors

►Robust Design

►Detect and fix code errors

25

►Robust Code

Design Error Detection in MBDDesign Error Detection in MBD

RESEARCH REQUIREMENTS

DESIGN

Environment Models

Mechanical Electrical

Supervisory LogicDESIGN

H d itt

IMPLEMENTATION

Control AlgorithmsHandwritten
Code

MCU DSP

Hand
Code

Generated
C/C++

Third Party
Code

26
INTEGRATION

Process of Design Error Detection in MBDProcess of Design Error Detection in MBD

Verify design at the model level (model verification)
– Identify issues such as dead logic

Exhaustively verify design
– Using formal methodsUsing formal methods

27

Formal MethodsFormal Methods

Mathematical based techniques for
– Specification, development and verification of software

Proof based verification
– Formally prove attributes of a system– Formally prove attributes of a system
– Results are considered “sound”

Example techniques
– Model checking for exhaustive search for all states

Abstract interpretation for semantic analysis of programs

28

– Abstract interpretation for semantic analysis of programs

Introduction to Abstract InterpretationIntroduction to Abstract Interpretation

Formal methods based verification
– Solution that can be applied to software programspp p g

What is Abstract Interpretation?
– Consider the multiplication of three large integers

?–4586 × 34985 × 2389 = ?

29

Application of Abstract InterpretationApplication of Abstract Interpretation

Abstract result of computation to sign domain
– Could be positive or negative
– Sign of the computation will be negative

Determining sign
– An application of Abstract Interpretation

Technique enables precise knowledge of some properties
– The sign, without having to multiply integers fully
– Sign will never be positive for this computation

Abstract Interpretation is sound and exhaustively proves
– That sign of the operation will always be negative
– And never positive

30

– And never positive

Verification Tools that Implement ModelVerification Tools that Implement Model
Checking and Abstract Interpretation

Verification Tools Reference
ImProve for building high assurance

b dd d li ti
Tom Hawkins

embedded applications

UPPAAL for modeling, validation and
verification of real-time systems

Aalborg University
y

Stacktool for stack overflow checking of
embedded software

University of Utah

DAEDALUS for validating critical software European IST Programme

And many others … Search engines, Wikipedia, ….

31

And many others … Search engines, Wikipedia, ….

In this tutorialIn this tutorial …

We use MathWorks verification tools to
demonstrate examples of applying formal

th dmethods

T d t t h tt t tTo demonstrate how one can attempt to
achieve zero defect software

Applicable to any tool or product that
implements formal methods

32

p

Confirming sound designConfirming sound design

Tutorial Demo

Design verification of a modelDesign verification of a model

33

Verification of Handwritten CodeVerification of Handwritten Code

RESEARCH REQUIREMENTS

DESIGN

Environment Models

Mechanical Electrical

Supervisory LogicDESIGN

H d itt

IMPLEMENTATION

Control AlgorithmsHandwritten
Code

MCU DSP

Hand
Code

Generated
C/C++

Third Party
Code

34
INTEGRATION

Typical Methods of SoftwareTypical Methods of Software
Verification and Testing

Code reviews
– Fagan inspections to reduce coding errors
– Process needs to be complemented with other methods

Dynamic testy
– Validate that software meets requirements
– Verify the execution flow of software, often on the target

35

When Are You Done?When Are You Done?

Dijkstra
– “Program testing can be used to show the presence g g p

of bugs, but never to show their absence”

Hailpern
– “Given that we cannot really show there are no more

i th h d t t ti ?”errors in the program, when do we stop testing?”

36

Find the Run Time Error in new position()Find the Run-Time Error in new_position()

37

Find the Run Time Error in new position()Find the Run-Time Error in new_position()

38

Consider the operation: x / (x y)Consider the operation: x / (x - y)

Potential run-time errors
– Variables x and y may not be initializedy y
– An overflow on subtraction
– If x == y, then a divide by zero will occur

How to prove that run-time errors do or do not
exist?

39

Code Review of new position()Code Review of new_position()

40

Code Review of new position()Code Review of new_position()

Variables may not
be initialized

41

Code Review of new position()Code Review of new_position()

Variables may not
be initialized

Overflow
potential

42

Code Review of new position()Code Review of new_position()

Variables may not
be initialized

Overflow
potential

Division by
zero potential

43

Code Review and Dynamic TestCode Review and Dynamic Test

Code review results
– Initially identified potential divide by zero conditiony p y
– Deeper review shows potential overflow and

initialization issues

Next step is to Test
– Validate that code written to meet requirements
– Verify that the code is robust and will not fail

44

Requirements SpecificationRequirements Specification

Compute new position of control arm based on 2
position sensors

Implement algorithm as modeled in the Simulink
modeling environmentmodeling environment

45

Return value of new position shall be within ± 228

Dynamic Test with a Test HarnessDynamic Test with a Test-Harness

46

Exhaustive Testing of new position()Exhaustive Testing of new_position()

Both inputs are signed int32
– Full range inputs: -231-1 .. +231-1
– All combinations of two inputs: 4.61X1018 test-cases

Test time on a Windows host machineTest time on a Windows host machine
– 2.2GHz T7500 Intel processor
– 4 million test-cases took 9.284 seconds
– Exhaustive testing time: 339,413 years

Exhaustive Testing is Impossible

47

Exhaustive Testing is Impossible

How to Increase Confidence?How to Increase Confidence?

Could do more spot testing
– But it is still not exhaustive

Add defensive code (if x != y …)
– This will protect against divide by zero!
– But adds more code and execution overhead– But adds more code and execution overhead
– What about other potential errors like overflow?

Wish that the code will not failWish that the code will not fail
– Is that a good strategy …

What about static code analysis tools?

48

What about static code analysis tools?
– Compiler warnings and more sophisticated tools

Introduction to Static Code AnalysisIntroduction to Static Code Analysis

Scanning source code to automate software verificationg
Range from unsound methods to sound techniques

49

Introduction to Static Code AnalysisIntroduction to Static Code Analysis

Scanning source code to automate software verification

low

g
Range from unsound methods to sound techniques

at
io

n
ph

is
tic

a
so

high

50

high

Introduction to Static Code AnalysisIntroduction to Static Code Analysis

Scanning source code to automate software verificationg
Range from unsound methods to sound techniques

Compiler warningslow Compiler warnings
– Incompatible type detection, etc.

at
io

n

Bug finding
– Pattern matching, heuristics, data/control flowph

is
tic

a

Formal methods
Sound proof based techniques applied to source code

so

high

51

– Sound proof based techniques, applied to source codehigh

Compiler Warning ExampleCompiler Warning Example

52

Compiler Warning ExampleCompiler Warning Example

53

Compiler Warnings for new position()Compiler Warnings for new_position()

54

Compiler Warnings for new position()Compiler Warnings for new_position()

55

Static Analysis with Splint (splint org)Static Analysis with Splint (splint.org)

56

Static Analysis with Splint (splint org)Static Analysis with Splint (splint.org)

57

Verification Results on new position()Verification Results on new_position()

R i d Ch kRequired Checks

Activity Comments Status
C d R i Id tifi d t ti l F th i tiCode Review Identified potential non-

initialized variables, overflows,
and divide by zero

Further examination
required

Dynamic Test Test to requirements Passy q

Additional Confidence Checks

Activity Comments Status
Compiler warnings None No issues

Static Code Analysis Splint with –strict No issues

58

Static Code Analysis Splint with –strict No issues

Formal methods

Formal Methods Based Static CodeFormal Methods Based Static Code
Analysis

Detects and proves the absence of certain run-time errors

Operates at source code levelp

Verification
Results

Polyspace
Source Code

Results

GUI &
Web Browser

Static Code Analysis
Source Code

Reports

59

S CPolyspace Static Code Analysis Results
static void pointer_arithmetic (void) {

int array[100];
G li bl int *p = array;

int i;

for (i = 0; i < 100; i++) {

*p = 0;

Green: reliable
safe pointer access

p 0;

p++;

}

if (get_bus_status() > 0) {

if (get oil pressure() > 0) {

Red: faulty
out of bounds error

if (get_oil_pressure() > 0) {

*p = 5;

} else {

i++;

}Gray: dead
}

i = get_bus_status();

if (i >= 0) {

unreachable code

60

*(p - i) = 10;

}

}
Orange: unproven
may be unsafe for some
conditions

Returning to our Example new position()Returning to our Example new_position()

61

Polyspace Results on new position()Polyspace Results on new_position()

Tutorial Demo

Verification results for new position()Verification results for new_position()

Results for new position() with added protection

62

_p () p

How to Prove x! y for x/(x y)How to Prove x!=y for x/(x-y)

y y = x

+
+

+
++

++++

+
+

+
+

+
+

++++
+

+
++

+

+
+ +

+
+

+

++++
+ ++

+

++
+
+
+ +

+
+

+
+

+
+

++ +
+

+
+

x

63

How to Prove x! y for x/(x y)How to Prove x!=y for x/(x-y)

y y = x
l

Type Analysis (bounding conditions)

+
+

+
++

++++

+
+

+
+

+
+

++++
+

+
++

+

+
+ +

+
+

+

l

++++
+ ++

+

++
+
+
+ +

+
+

+
+

+
+

++ +
+

+
+

i j
k

x

64

How to Prove x! y for x/(x y)How to Prove x!=y for x/(x-y)

y y = x
With Abstract Interpretation

+
+

+
++

++++

+
+

+
+

+
+

++++
+

+
++

+

+
+ +

+
+

+ • No code execution
• No test-cases

++++
+ ++

+

++
+
+
+ +

+
+

+
+

+
+

++ +
+

+
+

• Exhaustive!
• Proven!

x

65

Advantages and DisadvantagesAdvantages and Disadvantages

Advantages
– Deep formal methods based code verification

Can formally prove that code is defect free– Can formally prove that code is defect free
and formally prove absolute existence of a defect

– Sound technique … identifies all potential failure points

Disadvantages
– Compute intensive, will take time to run
– In practice limited to projects with <1 MLOC
– If results are viewed conservatively,

all potential defects must be reviewed

66

Verifying Complex Handwritten CodeVerifying Complex Handwritten Code

Tutorial Demo

Identifying run-time errors (reds)

Dead code (grays)

Understanding potentially failing code (oranges)

67

Analysis of multithreaded coded

Range Violation DetectionRange Violation Detection

Some applications assume certain variable range
– E.g. angle in degrees must be between 0 and 359
– May simplify simulation and test

What happens if range is violated?What happens if range is violated?

How to detect range violations exhaustively?How to detect range violations exhaustively?

68

Range Violation DetectionRange Violation Detection

Range violation detection

69

Practical Considerations of
Implementing and VerifyingImplementing and Verifying
Complex Systems

Context of automatic code generation from Model Based Design (MBD) and
the reality of mixed model and code environmentst e ea ty o ed ode a d code e o e ts

70

Verification of a SystemVerification of a System

RESEARCH REQUIREMENTS

DESIGN

Environment Models

Mechanical Electrical

Supervisory LogicDESIGN

H d itt

IMPLEMENTATION

Control AlgorithmsHandwritten
Code

MCU DSP

Hand
Code

Generated
C/C++

Third Party
Code

71
INTEGRATION

Returning to our Engine Controller

Complex Algorithm

Model + Code

Aircraft Engineg

Embedded Controller

Code

72

Code

Automatic Code Generation from Model

=
S-FunctionS-FunctionS-FunctionS-FunctionS F ti =

…

S FunctionS-Function

S-FunctionS-FunctionS-FunctionS-FunctionCustom Code
…Subsystem

…

Model Reference

Storage
Classes

S-FunctionS-FunctionS-FunctionS-FunctionLegacy Code

Legacy Data…

Generated code

Model Reference
…

73

Generated code
from model

Automatic Code Generation from Model

Generated code consists of
S b t d d l f

=
S-FunctionS-FunctionS-FunctionS-FunctionS F ti

– Subsystems and model references

Often includes handwritten code
S F ti d l d =

…

S FunctionS-Function

S-FunctionS-FunctionS-FunctionS-FunctionCustom Code
…Subsystem

…

– S-Functions and legacy code
– Individually, small in size (100s LOC)
– May be automatically repeated many

times within generated code

Model Reference

Storage
Classes

S-FunctionS-FunctionS-FunctionS-FunctionLegacy Code

g

Legacy Data…

Generated code

Model Reference
…

74

Generated code
from model

Automatic Code Generation from Model

Generated code consists of
S b t d d l f

=
S-FunctionS-FunctionS-FunctionS-FunctionS F ti

– Subsystems and model references

Often includes handwritten code
S F ti d l d =

…

S FunctionS-Function

S-FunctionS-FunctionS-FunctionS-FunctionCustom Code
…Subsystem

…

– S-Functions and legacy code
– Individually, small in size (100s LOC)
– May be automatically repeated many

times within generated code

Model Reference

Storage
Classes

S-FunctionS-FunctionS-FunctionS-FunctionLegacy Code

g

Robustness issues to consider
– Handwritten code fails, or causes

Legacy Data…

Generated code

Model Reference
…

generated code to fail
– Generated code may cause handwritten

code to fail (Interface related failures)
– Handwritten code is not visible to

75

Generated code
from model

Handwritten code is not visible to
modeling tools

Integration of Generated CodeIntegration of Generated Code

Embedded ControllerEmbedded SoftwareEmbedded ControllerEmbedded Software

Function
or Task

Function
or Task
(MBD Function

or TaskFunction
F ti

Function
or Task
(MBD (handwritten)

(
Generated

Code)

or Task
(handwritten)or Task

(handwritten)

Function
or Task

(handwritten)
Function
or Task

(handwritten)

(MBD
Generated

Code)

Generated
Code Function

or Task
(handwritten)

Handwritten
Code

Third Party
CodeThird Party

Code Obj. Code
(lib i)Obj Code

76

(libraries)Obj. Code
(libraries)

Integration of Generated CodeIntegration of Generated Code
=

…

S-FunctionS-FunctionS-FunctionS-FunctionS-Function

S-FunctionS-FunctionS-FunctionS F ti
…Subsystem

Embedded Software
Legacy Data

Model Reference
…

Storage
Classes

Model Reference
…

S-FunctionS-FunctionCustom Code

S-FunctionS-FunctionS-FunctionS-FunctionLegacy Code

y
…

Embedded Software

Function
or Task

Function
or Task
(MBD Function

or TaskFunction
F ti

Function
or Task
(MBD

Generated code
from model

(handwritten)
(

Generated
Code)

or Task
(handwritten)or Task

(handwritten)

Function
or Task

(handwritten)
Function
or Task

(handwritten)

(MBD
Generated

Code)

Generated
Code Function

or Task
(handwritten)

Handwritten
Code

Third Party
CodeThird Party

Code Obj. Code
(lib i)Obj Code

77

(libraries)Obj. Code
(libraries)

Integration of Generated CodeIntegration of Generated Code
Code integration

G d d i h d h i h

Embedded Software

– Generated code stitched together with
handwritten code

– All components integrated with
handwritten code Embedded Software

Function
or Task

Function
or Task
(MBD Function

or TaskFunction
F ti

Function
or Task
(MBD (handwritten)

(
Generated

Code)

or Task
(handwritten)or Task

(handwritten)

Function
or Task

(handwritten)
Function
or Task

(handwritten)

(MBD
Generated

Code)

Generated
Code Function

or Task
(handwritten)

Handwritten
Code

Third Party
CodeThird Party

Code Obj. Code
(lib i)Obj Code

78

(libraries)Obj. Code
(libraries)

Integration of Generated CodeIntegration of Generated Code
Code integration

G d d i h d h i h

Embedded Software

– Generated code stitched together with
handwritten code

– All components integrated with
handwritten code Embedded Software

Function
or Task

Function
or Task
(MBD Function

or TaskFunction
F ti

Function
or Task
(MBD

Robustness issues to consider
– Design error in the generated code

(handwritten)
(

Generated
Code)

or Task
(handwritten)or Task

(handwritten)

Function
or Task

(handwritten)
Function
or Task

(handwritten)

(MBD
Generated

Code)

Generated
Code Function

or Task
(handwritten)

Handwritten
Code

– Runtime error in handwritten or
3rd party code

– How do you ensure the entire system
is robust?

Third Party
CodeThird Party

Code Obj. Code
(lib i)Obj Code

is robust?
– How to verify generated code at

interface level?

79

(libraries)Obj. Code
(libraries)

Verification of Mixed Model and CodeVerification of Mixed Model and Code

Tutorial Demo

Checking handwritten code in the models
Verifying the generated code
Verifying integrated code

80

Additional Techniques for Improving
Software QualitySoftware Quality

Getting near to zero defect goal

81

Enforce Code StandardsEnforce Code Standards

C is a very flexible language
– char **********ptr; is valid syntax
– You can also write code without comments

A th d ti ?Are these good practices?
– In general, NO

Important to follow some code standards
– Examples: MISRA C/C++, JSF++

82

Examples: MISRA C/C , JSF

Using Code StandardsUsing Code Standards

Example standards
– MISRA (Motor Industry Software Reliability Association),

developed for automotive but used outside in other industriesdeveloped for automotive, but used outside in other industries
– JSF++ (Joint Strike Fighter Air Vehicle C++)

F ilit tFacilitate
– Code safety, portability and reliability

Code rules
– Some required, others advisories
– Various categories such as style environment and run-time

83

Various categories, such as style, environment, and run time

Example MISRA RulesExample MISRA Rules

Required
– All object and function identifiers shall be declared before use
– The right hand side of a "&&" or "||" operator shall not containThe right hand side of a && or || operator shall not contain

side effect
– The statement forming the body of an "if", "else if", "else",

"while", "do ... while", or "for" statement shall always be
l d i benclosed in braces

Advisory
– Should not directly use basic types such as char, int, float etc.
– All declarations at file scope should be static where possible
– Tests of a value against zero should be made explicit, unless

the operand is effectively Boolean

84

the operand is effectively Boolean

Applying Coding StandardsApplying Coding Standards

Tutorial Demo

Application of MISRA C coding standardsApplication of MISRA C coding standards

Measuring the improvement in quality

85

g p q y

Enabling Software QualityEnabling Software Quality

Ideal goal, create software with zero defects

In reality, must have a quality mandate
– Internally or required externallyy q y
– To meet specific software quality objectives

Define a quality model with objectives
– Enables a prescriptive solution to achieve quality

86

Runtime Defects in SoftwareRuntime Defects in Software

Software will contain runtime defects
– Cannot eliminate all defects in one step

Incremental processes are neededIncremental processes are needed
– Different quality objectives and levelsAll

Runtime
Ex. quality model with objectives
– Six levels, s/w quality objectives (SQO)

For intermediate development and

Defects
in Your

S ft – For intermediate development and
verification stages

Software

87

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

All
Runtime
Defects
in Your

S ftSoftware

88

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

Eliminate some runtime defectsEliminate some runtime defectsEliminate some runtime defectsEliminate some runtime defects

Some
Runtime

By quantifying code verification results
– Red, Gray, Orange
– MISRA RulesRuntime

Defects
May Still
Remain

– Code complexity metrics

89

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

SQO1SQO1

Software Quality Objectives #1

SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

First level has limited scope
– Subsequent levels increase scope
– Runtime defects may still remain in

Some
Runtime

code
Runtime
Defects
May Still
Remain

90

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

SQO1SQO1SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO2
No s stematic r n time errors (i e no reds)

SQO2
No s stematic r n time errors (i e no reds)• No systematic run-time errors (i.e. no reds)

• No unintentional non-terminating constructs
• No systematic run-time errors (i.e. no reds)
• No unintentional non-terminating constructs

Some
Runtime Second level increases scopeRuntime
Defects
May Still
Remain

Second level increases scope
– More runtime defects eliminated
– But, runtime defects may still remain

For an intermediate delivery
– Subsequent levels will improve quality

91

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

SQO1SQO1SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO2
No s stematic r n time errors (i e no reds)

SQO2
No s stematic r n time errors (i e no reds)• No systematic run-time errors (i.e. no reds)

• No unintentional non-terminating constructs
• No systematic run-time errors (i.e. no reds)
• No unintentional non-terminating constructs

SQO3
• No unreachable branches (i.e. no dead code)

SQO3
• No unreachable branches (i.e. no dead code) Some

RuntimeRuntime
Defects
May Still
Remain

92

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

SQO1SQO1SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO2
No s stematic r n time errors (i e no reds)

SQO2
No s stematic r n time errors (i e no reds)• No systematic run-time errors (i.e. no reds)

• No unintentional non-terminating constructs
• No systematic run-time errors (i.e. no reds)
• No unintentional non-terminating constructs

SQO3
• No unreachable branches (i.e. no dead code)

SQO3
• No unreachable branches (i.e. no dead code) Some

SQO4
• Achieve 1st subset of non-systematic run-time errors

(i.e. specified percentage of orange)

SQO4
• Achieve 1st subset of non-systematic run-time errors

(i.e. specified percentage of orange)

Runtime
Defects
May Still
Remain

93

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

SQO1SQO1SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO2
No s stematic r n time errors (i e no reds)

SQO2
No s stematic r n time errors (i e no reds)• No systematic run-time errors (i.e. no reds)

• No unintentional non-terminating constructs
• No systematic run-time errors (i.e. no reds)
• No unintentional non-terminating constructs

SQO3
• No unreachable branches (i.e. no dead code)

SQO3
• No unreachable branches (i.e. no dead code)

SQO4
• Achieve 1st subset of non-systematic run-time errors

(i.e. specified percentage of orange)

SQO4
• Achieve 1st subset of non-systematic run-time errors

(i.e. specified percentage of orange)

Some
Runtime
Defects
May Still
Remain

SQO5
• Compliant to defined 2nd MISRA-2004 rules subset
• Achieve 2nd subset of non-systematic run-time errors

SQO5
• Compliant to defined 2nd MISRA-2004 rules subset
• Achieve 2nd subset of non-systematic run-time errors

94

Incremental Steps to Achieve QualityIncremental Steps to Achieve Quality

SQO1SQO1SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO1
• Meet specific code complexity thresholds
• Compliant to defined 1st MISRA-2004 rules subset

SQO2
No s stematic r n time errors (i e no reds)

SQO2
No s stematic r n time errors (i e no reds)• No systematic run-time errors (i.e. no reds)

• No unintentional non-terminating constructs
• No systematic run-time errors (i.e. no reds)
• No unintentional non-terminating constructs

SQO3
• No unreachable branches (i.e. no dead code)

SQO3
• No unreachable branches (i.e. no dead code)

SQO4
• Achieve 1st subset of non-systematic run-time errors

(i.e. specified percentage of orange)

SQO4
• Achieve 1st subset of non-systematic run-time errors

(i.e. specified percentage of orange)

SQO5
• Compliant to defined 2nd MISRA-2004 rules subset
• Achieve 2nd subset of non-systematic run-time errors

SQO5
• Compliant to defined 2nd MISRA-2004 rules subset
• Achieve 2nd subset of non-systematic run-time errors

SQO6SQO6

95

SQO6
• Achieve 3rd subset of non-systematic run-time errors

SQO6
• Achieve 3rd subset of non-systematic run-time errors

DO 178B Certification Credit withDO-178B Certification Credit with
Verification Tools

Partial credit for the following:
– Table A-5

Ref. Section: 6.3.4b, 6.3.4c, 6.3.4d, 6.3.4f

– Table A-6
R f S ti 6 4 2 1 6 4 2 2 6 4 3Ref. Section: 6.4.2.1, 6.4.2.2, 6.4.3

Next slide explain 6.3.4.b and 6.3.4.fNext slide explain 6.3.4.b and 6.3.4.f

96

Certification Credit for 6 3 4 bCertification Credit for 6.3.4.b

Objective
– Compliance with the software architecture

Th bj ti i t th t th S C d t h th– The objective is to ensure that the Source Code matches the
data flow and control flow defined in the software architecture

H t l b dHow tools can be used
– The data flow

Prove adherence to this aspect of the standard, as it automatically builds global
data dictionary and identification of shared data reading and writing accessesdata dictionary and identification of shared data reading and writing accesses

Artifacts
D t di ti t h t

97

– Data dictionary, concurrent access graph, etc.

Certification Credit 6 3 4 fCertification Credit 6.3.4.f

Objective
– Determine the consistency of the Source Code, including stack

usage, fixed point arithmetic overflow and resolution, resource g , p ,
contention, worst-case execution timing, exception handling,
use of uninitialized variables or constants, unused variables or
constants, and data corruption due to task or interrupt conflicts

Code verification helps to identifyCode verification helps to identify
– Exhaustively: Fixed point arithmetic overflows, use of

uninitialized variables and constants, etc.
– Partially: Unused variables and constants– Partially: Unused variables and constants

Artifacts
– Color coding to identify quality of code

Report generation for artifact purpose

98

– Report generation for artifact purpose

Conclusion

Summary of tutorial

99

Adopting New ProcessesAdopting New Processes
Short Term

Detect and fix design and code errors
– Unreachable states, dead logic, etc.
– Fix code level run-time errors

Simplify code review processSimplify code review process
– Take verification results to code review

Develop better test-cases
– Improve coverage analysis

Understand impact of variable ranges

100

– Understand impact of variable ranges

Adopting New ProcessesAdopting New Processes
Long Term

Make verification a part of your quality
improvement processp p
– Monitor quality and status

Leverage verification for certification
– Maybe possible to skip some processes
– E.g. show code does not contain divide by zeros

101

ConclusionConclusion

Complexity of systemsp y y
– Learn from past failures

Model and code verification
– Address design and code with error detection and proof
– Use model verification to detect and fix design errors
– Use code verification to detect and fix coding errors

Practical considerations
– Improve robustness in mixed model and code environments

Additional techniques for improving software quality
– Coding standards such as MISRA and JSF
– Certification standards such as DO-178B

102

– Achieving quality goals with software quality objectives

AcronymsAcronyms

DSP – Digital Signal Processor

JSF – Joint Strike Fighter

KLOC – Thousands (K) of Lines of Code

LOC – Lines of Code

MBD M d l B d D iMBD – Model Based Design

MCU – Micro Control Unit

MISRA Motor Industry Software Reliability AssociationMISRA – Motor Industry Software Reliability Association

MLOC – Millions of Lines of Code

SW – Software

103

SW – Software

SQO – Software Quality Objectives

